Gene Expression Profiling in Abdominal Aortic Aneurysms After Finite Element Rupture Risk Assessment.
نویسندگان
چکیده
PURPOSE To investigate the association between local biomechanical rupture risk calculations from finite element analysis (FEA) and whole-genome profiling of the abdominal aortic aneurysm (AAA) wall to determine if AAA wall regions with highest and lowest estimated rupture risk show different gene expression patterns. METHODS Six patients (mean age 74 years; all men) scheduled for open surgery to treat asymptomatic AAAs (mean diameter 55.2±3.5 mm) were recruited for the study. Rupture risk profiles were estimated by FEA from preoperative computed tomography angiography data. During surgery, AAA wall samples of ~10 mm2 were extracted from the lowest and highest rupture risk locations identified by the FEA. Twelve samples were processed for RNA extraction and subsequent whole genome expression profiling. Expression of single genes and of predefined gene groups were compared between vessel wall areas with highest and lowest predicted rupture risk. RESULTS Normalized datasets comprised 15,079 gene transcripts with expression above background. In biopsies with high rupture risk, upregulation of 18 and downregulation of 18 genes was detected when compared to the low-risk counterpart. Global analysis of predefined gene groups revealed expression differences in genes associated with extracellular matrix (ECM) degradation (p<0.001), matrix metalloproteinase activity (p<0.001), and chemokine signaling (p<0.001). CONCLUSION Increased expression of genes involved in degrading ECM components was present in AAA wall regions with highest biomechanical stress, supporting the thesis of mechanotransduction. More experimental studies with cooperation of multicenter vascular biobanks are necessary to understand AAA etiologies and identify further parameters of FEA model complementation.
منابع مشابه
A Literature Review of the Numerical Analysis of Abdominal Aortic Aneurysms Treated with Endovascular Stent Grafts
The purpose of this paper is to present the basic principles and relevant advances in the computational modeling of abdominal aortic aneurysms and endovascular aneurysm repair, providing the community with up-to-date state of the art in terms of numerical analysis and biomechanics. Frameworks describing the mechanical behavior of the aortic wall already exist. However, intraluminal thrombus non...
متن کاملA Finite Element Analysis Rupture Index (FEARI) as an Additional Tool for Abdominal Aortic Aneurysm Rupture Prediction
Currently, abdominal aortic aneurysms (AAAs), which are a permanent dilation of the aorta, are treated surgically when the maximum transverse diameter surpasses 5.5cm. AAA rupture occurs when the locally acting wall stress exceeds the locally acting wall strength. There is a need to review the current diameter-based criterion, and so it may be clinically useful to develop an additional tool to ...
متن کاملDrug Therapy for Small Abdominal Aortic Aneurysm
Dear Editor,Abdominal aortic aneurysm is often asymptomatic, less recognized, and causes considerable mortality and morbidity, if missed. The incidence varies from country to country and the occurrence is influenced by modifiable (smoking, coronary heart disease, hypertension, dyslipidemia, and prolonged steroid therapy) and non-modifiable risk factors (increasing age, male gender, and positive...
متن کاملAutomatic 3D Geometry Reconstruction and FE-Mesh generation of Abdominal Aortic Aneurysm Rupture
Abdominal Aortic Aneurysms (AAAs) are pathological localized dilations of the abdominal aorta. Untreated AAAs may enlarge until they rupture; an event with a mortality rate of 70-95%. The indication of medical interventions is directly linked to an assessment of the formation’s risk of rupture, which, up to date is based on simple (geometrical) diagnostic parameters. However, there is scientifi...
متن کاملExploring the Biological and Mechanical Properties of Abdominal Aortic Aneurysms Using USPIO MRI and Peak Tissue Stress: A Combined Clinical and Finite Element Study
Inflammation detected through the uptake of ultrasmall superparamagnetic particles of iron oxide (USPIO) on magnetic resonance imaging (MRI) and finite element (FE) modelling of tissue stress both hold potential in the assessment of abdominal aortic aneurysm (AAA) rupture risk. This study aimed to examine the spatial relationship between these two biomarkers. Patients (n = 50) > 40 years with A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2017